skip to main content


Search for: All records

Creators/Authors contains: "Dexter, Kyle G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands. 
    more » « less
  2. null (Ed.)
    Monechma Hochst. s.l. (Acanthaceae) is a diverse and ecologically important plant group in sub-Saharan Africa, well represented in the fire-prone savanna biome and with a striking radiation into the non-fire-prone succulent biome in the Namib Desert. We used RADseq to reconstruct evolutionary relationships within Monechma s.l. and found it to be non-monophyletic and composed of two distinct clades: Group I comprises eight species resolved within the Harnieria clade, whilst Group II comprises 35 species related to the Diclipterinae clade. Our analyses suggest the common ancestors of both clades of Monechma occupied savannas, but both of these radiations (~13 mya crown ages) pre-date the currently accepted origin of the savanna biome in Africa, 5–10 mya. Diversification in the succulent biome of the Namib Desert is dated as beginning only ~1.9 mya. Inflorescence and seed morphology are found to distinguish Groups I and II and related taxa in the Justicioid lineage. Monechma Group II is morphologically diverse, with variation in some traits related to ecological diversification including plant habit. The present work enables future research on these important lineages and provides evidence towards understanding the biogeographical history of continental Africa. 
    more » « less
  3. Abstract

    Reproductive character displacement is a pattern whereby sympatric lineages diverge more in reproductive character morphology than allopatric lineages. This pattern has been observed in many plant species, but comparably few have sought to disentangle underlying mechanisms. Here, in a diverse lineage of Neotropical plants (Ruellia; Acanthaceae), we present evidence of reproductive character displacement in a macroevolutionary framework (i.e., among species) and document mechanistic underpinnings. In a series of interspecific hand pollinations in a controlled glasshouse environment, we found that crosses between species that differed more in overall flower size, particularly in style length, were significantly less likely to produce viable seeds. Further, species pairs that failed to set seed were more likely to have sympatric distributions in nature. Competition for pollinators and reinforcement to avoid costly interspecific mating could both result in these patterns and are not mutually exclusive processes. Our results add to growing evidence that reproductive character displacement contributes to exceptional floral diversity of angiosperms.

     
    more » « less
  4. Abstract In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. Abstract

    The Amazon forest is far from uniform, containing different forest types and even savannas, but quantitative analyses of this variation are lacking. Here, we applied ordination analyses to test the floristic differentiation among Amazonian vegetation types using data for virtually all known tree species occurring in the Amazon (8224), distributed across 1584 sites. We also performed multiple regressions to assess the role of climate and substrate in shaping continental‐scale patterns of community composition across Amazonia. We find that the traditional classification of Amazonian vegetation types is consistent with quantitative patterns of tree species composition. High elevation and the extremes of substrate‐related factors underpin the floristic segregation of environmentally “marginal” vegetation types andterra firmeforests with climatic factors being relatively unimportant. These patterns hold at continental scales, with sites of similar vegetation types showing higher similarity between them regardless of geographic distance, which contrasts with the idea of large‐scale variation among geographic regions (e.g., between the Guiana Shield and southwestern Amazon) representing the dominant floristic pattern in the Amazon. In contrast to other tropical biomes in South America, including theMata Atlântica(second largest rain forest biome in the neotropics), the main floristic units in the Amazon are not geographically separated, but are edaphically driven and spatially interdigitated across Amazonia. Two thirds ofterra firmetree species are restricted to this vegetation type, while among marginal vegetation types, only white‐sand forests (campinaranas) have a substantial proportion of restricted species, with other vegetation types sharing large numbers of species.

     
    more » « less
  6. Abstract

    Global patterns of species and evolutionary diversity in plants are primarily determined by a temperature gradient, but precipitation gradients may be more important within the tropics, where plant species richness is positively associated with the amount of rainfall. The impact of precipitation on the distribution of evolutionary diversity, however, is largely unexplored. Here we detail how evolutionary diversity varies along precipitation gradients by bringing together a comprehensive database on the composition of angiosperm tree communities across lowland tropical South America (2,025 inventories from wet to arid biomes), and a new, large-scale phylogenetic hypothesis for the genera that occur in these ecosystems. We find a marked reduction in the evolutionary diversity of communities at low precipitation. However, unlike species richness, evolutionary diversity does not continually increase with rainfall. Rather, our results show that the greatest evolutionary diversity is found in intermediate precipitation regimes, and that there is a decline in evolutionary diversity above 1,490 mm of mean annual rainfall. If conservation is to prioritise evolutionary diversity, areas of intermediate precipitation that are found in the South American ‘arc of deforestation’, but which have been neglected in the design of protected area networks in the tropics, merit increased conservation attention.

     
    more » « less
  7. Abstract

    The outstanding diversity of Amazonian forests is predicted to be the result of several processes. While tree lineages have dispersed repeatedly across the Amazon, interactions between plants and insects may be the principal mechanism structuring the communities at local scales.

    Using metabolomic and phylogenetic approaches, we investigated the patterns of historical assembly of plant communities across the Amazon based on the Neotropical genus of treesInga(Leguminosae) at four, widely separated sites.

    Our results show a low degree of phylogenetic structure and a mixing of chemotypes across the whole Amazon basin, suggesting that although biogeography may play a role, the metacommunity for any local community in the Amazon is the entire basin. Yet, local communities are assembled by ecological processes, with the suite ofIngaat a given site more divergent in chemical defences than expected by chance

    Synthesis. To our knowledge, this is the first study to present metabolomic data for nearly 100 species in a diverse Neotropical plant clade across the whole Amazonia. Our results demonstrate a role for plant–herbivore interactions in shaping the clade's community assembly at a local scale, and suggest that the high alpha diversity in Amazonian tree communities must be due in part to the interactions of diverse tree lineages with their natural enemies providing a high number of niche dimensions.

     
    more » « less
  8. Abstract Aim

    In savannas, a grass‐dominated ground layer is key to ecosystem function via grass–fire feedbacks that maintain open ecosystems. With woody encroachment, tree density increases, thereby decreasing light in the ground layer and potentially altering ecosystem function. We investigated how light availability can filter individual grass species distributions and whether different functional traits are associated with response to a shade gradient in a landscape experiencing woody encroachment.

    Location

    Savanna–forest mosaic in the Cerrado domain, southeastern Brazil.

    Methods

    Along an encroachment gradient of increasing tree leaf area index (LAI) and shade, we determined how changing light availability alters grass diversity and ground layer structure relative to grass cover and grass functional traits (photosynthetic pathway, underground storage organs, bud protection and traits related to grass shape, size and leaf dimensions).

    Results

    Increasing shade led to a decrease in grass cover and grass species richness, and also compositional and functional changes. We found that where tree LAI reached 1, grass cover was reduced by 50% and species richness by 30%. While C4grass species abundances decreased with increasing shade, the opposite pattern was true for C3grasses. There were only small differences in light preferences among C4subtypes, with phosphoenolpyruvate carboxykinase (PCK) species tolerating slightly more shaded conditions. Persistence of some C4species under more shaded conditions was possible, likely due to an ability to store starch reserves via underground storage organs.

    Conclusions

    Woody encroachment changes diversity and structure of the grassy layer that is critical to the functioning of savanna ecosystems, highlighting the dependence of the diverse grass layer on open and sunny conditions. Our results suggest a threshold of tree cover close to LAI ≈ 1 as being critical to cerrado grassy layer conservation.

     
    more » « less
  9. Abstract

    Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base.

     
    more » « less